19 research outputs found

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Enantiomeric pairs of copper(II) polypyridyl-alanine complex salts: anticancer studies

    No full text
    The anticancer properties of two previously characterized pairs of optically pure chiral complex salts [Cu(phen)(ala)(H2O)]X·xH2O (phen = 1.10-phenanthroline; X = NO3 −; ala: l-alanine (l-ala) 1 and d-alanine (d-ala) 2; and (X = Cl−; ala: l-ala, 3 and d-ala, 4; x = number of lattice water molecules) are reported herein, together with the crystal structure of the d-enantiomer 4. Unlike cisplatin which is ineffective against MCF-7 cancer cells with the absence of caspase-3 protein expression, these two pairs of complex salts were effective against this cell line and they were able to induce an increase in intracellular ROS, loss in mitochondrial membrane potential, cell cycle arrest mainly at SubG1 phase , caspase-9 activation, and caspase-3/caspase-7-independent apoptosis. Screening of 1 on the NCI-60 panel of human cancer cell lines showed that it was effective against most of the cell lines. MTT-NCI modified assay screening was also done on other cancer cell lines, viz. A549, CNE1, and HepG2, and two normal cell lines, viz. MCF-10A and CHANG. The effects of chirality of these Cu(II) compounds, especially the greater selectivity of d-enantiomers over the l-counterparts, on their anticancer properties are also reported herein

    Comprehensive Analysis of Acylcarnitine Species in <i>db/db</i> Mouse Using a Novel Method of High-Resolution Parallel Reaction Monitoring Reveals Widespread Metabolic Dysfunction Induced by Diabetes

    No full text
    Acylcarnitines are exerting a variety of biological functions depending on the differences in lengths, saturation levels, and conjugation groups, which to a great extent contribute to the challenges of acylcarnitines quantifications due to various kinds of isomers. Here, we describe a novel method by using high-resolution parallel reaction monitoring (PRM) liquid chromatography-tandem mass spectrometry (LC-MS/MS). Both reversed-phase and normal-phase column were used in order to get accurate, reliable, widespread quantification of acylcarnitines, and without tedious sample preparation procedure. The method provided the most comprehensive acylcarnitine profile with high-resolution MS and MS/MS confirmation to date. A total of 117 acylcarnitines were detected from plasma and urine samples. The application of targeted profiling of acylcarnitines in <i>db/m+</i> control and <i>db/db</i> diabetic mice indicated incomplete amino acid and fatty acid oxidation on diabetic mice. Interestingly, the reduction of medium odd-numbered chain acylcarnitines in urine samples was first observed between <i>db/m+</i> and <i>db/db</i> mice. The high-resolution PRM method makes it possible to monitor the widespread metabolic changes of the acylcarnitines in response to stimuli. Besides, the accurate MS and MS/MS spectra data of the 117 acylcarnitines could be used as mass spectrometric resources for the identification of acylcarnitines
    corecore